β-Diphenylphosphinoyl Ketones (Ph₂PO·CH₂CH₂CO·R): Stable Reagents for β-Ketocarbanions

By Andrew Bell, Alan H. Davidson, Chris Earnshaw, Howard K. Norrish, Richard S. Torr, and Stuart Warren*

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary Acetals of the title compounds, available by five different routes, act as homoenolate equivalents by the Horner-Wittig reaction.

Conventional disconnection [a in (1)] of β , γ -unsaturated carbonyl compounds leads to the homoenolate ion (3). Reagents available for this synthon include those based

on sulphur¹ and Grignard reagents from protected β -halogeno-ketones.² The unconventional disconnection [b in (2)] of conjugated enones leads to the same synthon.

We report that acetals of β -diphenylphosphinoyl (Ph₂PO) ketones (4), available by five different routes (Scheme) are homoenolate equivalents by their Horner-Wittig reaction with aldehydes and ketones. In routes (i) and (ii) (Scheme) compounds formed by conventional carbonyl condensations are given umpolung¹ by the addition of the Ph₂PO group. β -Keto esters (5) can be protected and reduced² [route (i)] to give the alcohols (6) and hence, via the phosphonium salts³ which are not isolated, the acetals (7) e.g. (7; R¹ = Me, R² = H); 46% from (6). This route is particularly suitable for reagents (7) having substituents on C-2 and C-3. The anion of diphenylphosphine oxide [route (ii)] adds directly to enones⁴ to give reagents (8) substituted on C-1 and C-3, e.g. (8; R¹ = Et, R² = H, 55%; R¹ = R² = Me, 58%).

In routes (iii) to (v) we use the Ph_2PO group to assemble the carbon skeleton before the carbonyl group is introduced. Addition of alkyl-phosphine oxide anions to epoxides [route (iii)] gives alcohols (9), e.g. (9; $R^1 = Ph$, $R^2 = H$, 87%), converted by Jones oxidation into the ketones (8), e.g. (8; $R^1 = Ph$, $R^2 = H$, 96%), with the same substitution pattern as those derived from route (ii).

We have already described³ the addition of ketones to primary alkyl-phosphine oxides and the dehydration of the adducts (11) with trifluoroacetic acid (TFA) to give allyl-phosphine oxides (12). The same sequence [route

(i)
$$R^{1} \xrightarrow{R^{2}} CO_{2}Et \xrightarrow{HO}OH R^{1}$$
 $R^{2} \xrightarrow{OH} R^{2}$ $R^{2} \xrightarrow{PPh_{3}} OH_{2}PPh_{3}$ $R^{2} \xrightarrow{PPh_{3}} Ph_{2}P \xrightarrow{P} R^{2}$ $R^{2} \xrightarrow{PPh_{3}} Ph_{3}$ R

SCHEME

(v)] with α -methoxy ketones† gives adducts (14), e.g. (14; $R^1 = R^2 = Me$, 75%), which give the transposed ketones (15) with TFA, e.g., (15; $R^1 = R^2 = Me$, 80%), presumably via a vinyl ether. Direct conversion of the adducts (14) into the acetals (15) by treatment with toluene-p-sulphonic acid (TsOH) in refluxing benzene first alone, then with ethylene glycol, gave higher yields, e.g. (16; $R^1 = R^2 = Me$); 85% from (14).

Alternatively [route (iv)], the allyl-phosphine oxides (12) made by this route or by Ph_2PO migration,³ gave crystalline epoxides (13) with *m*-chloroperbenzoic acid (MCPBA), *e.g.* (13; $R^1 = Me$, $R^2 = H$, 61%), which in some cases rearrange to the ketones (15) with TFA or BF_3 , *e.g.* (15; $R^1 = Me$, $R^2 = H$, 90%). In other cases this reaction gave poor yields, *e.g.* on (13; $R^1 = Pr^1$, $R^2 = H$). Routes (iv) and (v) are suitable for compounds with substituents on C-1, C-2, and C-3.

† Conveniently made from adducts of aldehydes and acetylene by methylation with dimethyl sulphate and hydration of the triple bond (D. Guillerm-Dron, M. L. Capmau, and W. Chodkiewicz, Bull. Soc. chim. France, 1973, 1417).

(10)
$$\xrightarrow{1. \text{BuLi}} \text{Ph}_2 \overset{\text{O}}{\underset{\text{R}^4}{\text{Ph}_2}} \overset{\text{O}}{\underset{\text{R}^3}{\text{Ph}_2}} \overset{\text{NaH}}{\underset{\text{R}^4}{\text{Ph}_3}} \overset{\text{NaH}}{\underset{\text{R}^3}{\text{NaH}}} \overset{\text{R}^2}{\underset{\text{R}^3}{\text{R}^4}} \overset{\text{O}}{\underset{\text{R}^3}{\text{NaH}}} \overset{\text{NaH}}{\underset{\text{R}^3}{\text{R}^3}} \overset{\text{R}^2}{\underset{\text{R}^3}{\text{NaH}}} \overset{\text{NaH}}{\underset{\text{R}^3}{\text{NaH}}} \overset{\text{R}^2}{\underset{\text{R}^3}{\text{NaH}}} \overset{\text{R}^2}{\underset{\text{R}^3}$$

Where the ketone is isolated, as in routes (ii) and (iii), conversion into the crystalline acetal is near quantitative, $[e.g. (8) \rightarrow (10); R^1 = Ph, R^2 = H; 91\%].$ The acetals (7), (10), and (16) form anions [BuLi, tetrahydrofuran (THF)] which add to aldehydes and ketones in the usual way³ to give adducts (17), e.g. (17; $R^1 = Ph$, $R^2 = H$, $R^3 = R^4 = Me$, 93%; $R^1 = R^2 = Me$, $R^3 = Ph$, $R^4 = H$, 81%), which eliminate Ph₂PO- on treatment with NaH in THF to give the Horner-Wittig product (18), e.g. (18; $R^1 = Ph$, $R^2 = H$, $R^3 = R^4 = Me$, 95%; $R^1 = R^2 = Me$, $R^3 = Ph$, $R^4 = H$, 96%). Deprotection of the products (18) is straightforward.

We thank the S.R.C. for grants (to A.H.D., C.E., and R.S.T.).

(Received, 7th August 1978; Com. 862.)

B.-T. Gröbel and D. Seebach, Synthesis, 1977, 357; P. Brownbridge and S. Warren, J.C.S. Perkin I, 1977, 1131, 2272.
A. A. Ponaras, Tetrahedron Letters, 1976, 3105; C. Feugeas, Bull. Soc. chim. France, 1963, 2568.
A. H. Davidson, I. Fleming, J. I. Grayson, A. Pearce, R. L. Snowden, and S. Warren, J.C.S. Perkin I, 1977, 550; A. H. Davidson, C. Earnshaw, J. I. Grayson, and S. Warren, ibid., p. 1452.
P. F. Cann, S. Warren, and M. R. Williams, J.C.S. Perkin I, 1972, 2377.